solar radiation

PVSC44: Himawari 8 enabled real-time distributed PV simulations for distribution networks

Just over a year ago, I announced an exciting new project focused on delivering real-time distributed PV simulations to distribution network service providers (DNSPs). This is an Australian Renewable Energy Agency (ARENA) funded research project, led by the Australian National University. As the Chief Investigator on this research project, I have spent the last year regularly meeting with and networking with DNSPs across the country. As a result, we now have 12 of the 15 DNSPs on board, which is a tremendous outcome.

Each of theses DNSPs is providing us with the metadata for the installed PV system within their networks, which we are using to produce simulations of their power output.  This work extends the efforts of my PhD, where I built the Regional PV Simulation System (RPSS) through collaboration with locality utility ActewAGL, but adds new capability through real-time PV monitoring and derived irradiance estimates from the Himawari 8 satellite.

This week, I am at the PVSC44 conference, co-chairing the session on solar forecasting for grid integration of PV, as well as presenting a paper which outlines our modelling methodology for this new tool. I wanted to take the chance to put up an accompanying blog post, to help make it easily accessible to my fellow researchers. Of course if you want the real details, you should check out the paper :-).  It is important to note that the following methods are the result of a close industry collaboration with industry partner Solcast, and represented the state-of-the-art of its satellite nowcasting technologies from early 2017

[Download the Paper]

Here's how it all works..

Flow diagram of our methodology

Flow diagram of our methodology

We take images from the Himawari-8 satellite, in particular the visible and infrared channels, and apply the general principles of the Heliosat-2 approach for turning these into cloud opacity estimates. What's very interesting about this process, is that the spatial and temporal scales of this data are quite advanced, as compared to other geostationary weather satellites (e.g. GOES 13/15 over the US). At 1-2km^2 resolution with 10 minute update cycles, the radiation modelling enabled by this satellite is quite an exciting advancement for our field.

We use the Himawari 8 data in combination with the GFS NWP model to decompose clouds into lower, middle and upper troposphere layers, and then aggregate these layers to estimate total cloudiness. Total cloud opacity (represented as an index between 0 and 1) is then derived using differences between the lowest visible return value of albedo. With this value in hand, we apply a linear reduction to the Esra clear sky radiation model to produce an estimate of global horizontal irradiance (Gh) for each pixel. Estimates of Gh are afterwards decomposed into direct normal irradiance (Bn) and diffuse horizontal irradiance (Dh) through the Engerer2 separation model.

Satellite imagery decomposition

Satellite imagery decomposition

Radiation Validation on "Estimated Actuals"

estimated actuals

For this conference paper, we have validated the Gh values produced by this system. These "Estimated Actuals" are produced using the satellite scan for each time stamp (no forecasting involved). It is necessary to compare these outputs to the observed radiation conditions at the surface, which we accomplish using data from the Australian Bureau of Meteorology.  Using 7 sites and 2 months of data from the BoM, we were able to determine these estimated actuals to have a Mean Bias Error (MBE) of -7 W m-2 and Root Mean Squared Error (RMSE) of 55 W m-2.  This accomplishes the industry standard of a 'good' radiation model, which is defined in the literature as having an relative MBE less than 5% (1.8% reported) and relative RMSE less than 15% (10.7% reported).

PV Power Estimated Actuals + Validation

The next step in the methodology is to compute PV power output calculations, based on the installed characteristics of the PV systems considered.  This requires information such as the azimuth & tilt of the system, as well as the total installed capacity. We apply the Reindl transposition model to estimate the available plane of array irradiance, followed by a quadratic PV power model to compute the estimated power output. By combining the Estimated Actuals from the satellite system with this model, we also can compute Estimated Actuals for PV system power output.

Screen Shot 2017-06-27 at 14.47.55 pm.png

In order to accomplish this step & validate it, we collected data from 78 PV systems across the Canberra, Australia region for a period of 6 months.  Using these time-series data, we then applied our QCPV methodology to both quality control the reported power outputs, but also to determine the actual azimuths & tilts for the POA radiation modelling step.  For this validation, we report an MBE of 0.04 W/Wp and RMSE of 0.15 W/Wp

Overall scatter in the validation data shows well behaved results, but with accuracy losses nearly double that of the radiation validation. We note that this validation reports uneven bias across the distribution of PV system measurement values, suggesting further refinement of the quadratic PV model coefficients could be required.

Scaling it up for DNSPs

Given the relatively good performance of the modelling system (much improvement needed still for operational purposes) we apply this system to a network wide simulation.  By utilising the metadata for 15,500+ embedded solar PV systems in the ActewAGL distribution network, we produce Estimated Actuals for the PV power systems in this network via this methodology. Additionally, we implement a simple cross-validation using 6 PV systems in a real-time scenario and provide the demo in video format:

In the provided image, we see the Estimated Actuals for each individual PV system in the ActewAGL network, as provided for the 23rd of June 2016. This day was selected based upon its complicated, multi-layered cloud conditions to best demonstrate the capability of this system in a challenging circumstance. A heat map colour profile shows the relative power output from each PV system based on its installed capacity.  This is accompanied by the data from the 6 PV cross-validation sites in the circles which are colour filled according to their observed power output.

At bottom right of this image, the Estimated Actuals for these systems are displayed in grey, with the red line showing the observed power output values. Overall, we observe a slightly positive bias in the Estimated Actuals of 0.038 W/Wp and a relatively lower RMSE value of 0.12 W/Wp.

A Great Start: Where Next?

Overall, our team is quite happy with this first set of results, but we've many improvements to make to this system moving forward. As a part of this validation, we've already found & corrected issues with positive cloud opacity bias during overcast conditions, and we have implemented a dynamic kernel which corrects the cloud shadow displacement at low sun angles. Up next for us, is improving the radiation modelling routines. For one, Engerer2 was not designed for this purpose and our linear reduction on the Esra model needs to be updated.

The good news is, we've filled up our team with postdocs, PhDs, honours students and software developers, and are working hard to make these updates.  Soon, we'll even highlight the forecasting capability we've added to the system in an upcoming issue of Progress in Solar Energy.  In the meantime, we're deploying this system for our participating DNSP partners right now, and will iterate forward based on their feedback. So check back soon and connect with us on Research Gate to stay up to date & to collaborate.

It's all a part of teaming up for that solar-powered future! And in that spirit be sure to check out our data sharing campaign, where we are making the output of this system available for your research purposes. Read more at this link!

Lastly, the ANU team would like thank & acknowledge our industry partner Solcast's contributions to this project. 


A Data Sharing Compaign to Enable Researchers

A Call to University Researchers to "Get Applied"

It's no big secret that Australia's electricity sector is undergoing a rapid transformation, one that continues to surprise even the most aggressive growth targets for solar and storage, and has our regulators and market operators in a very demanding position. High electricity wholesale and spot prices, mean the costs of electricity are going up. Meanwhile, the cost of renewables and storage are falling quickly.  All across Australia, innovative companies are popping up which are providing solutions in the space of demand management, energy storage and energy trading and driving this transformation from the ground up.

in this electricity sector transformation, what role can universities play?

In this mix, I wonder, what role can Universities play? That's what my Academic mindset wants to know: how can we as researchers contribute to this challenging transformation?  I've had the great privilege of traveling much of Australia lately to visit with many segments of the electricity industry, and in each of those instances, I am filled with ideas on where Universities could contribute to the challenges that this sector is facing. 

But in wondering how best to make these relationships, these BIG ideas happen, I find myself exceptionally time-constrained. I simply can't work with everyone directly! Yet I feel a strong drive to help my fellow University researchers reach the real-world - how best to reconcile these?

Solar Data Enables

In contemplating this, I came to an interesting conclusion: high-resolution solar data is actually an enabling resource.  Let me explain what I mean - want to decide how to charge/discharge a battery? You need to know when the sun will or will not shine. Want to build a demand management algorithm for a commercial building? You need to understand how the rooftop solar array's power output will fluctuate during peak demand periods.  Need to orchestrate the dispatch of hundreds of MW of storage technologies? When will the next solar ramp event arrive and drive 100+MW shortfall of supply over the energy market zone you're trading in?

In the future grid, solar data is everything.  In fact, in my recent talk to the Energy Networks Australia "Grid Edge" Event [watch it here], I proposed that solar intermittency is the next frontier of opportunity for future grid technologies.

If we, as Universities, want to contribute to the future grid, this incredible transformation, then the research we complete will inherently require access to good solar data. And by 'data', I more specifically mean solar radiation or solar power generation, at high spatial and temporal resolutions.

Data Access Can Be Hard

However, solar data access is not easy. Most solar data in Australia is based on Typical Meteorological Years (TMY) climatologies, comes from only a handful of solar radiation sites scattered about the continent, or comes bundled on a harddrive at hourly resolutions and full of bias error. Other options include paying significant cash to commercial companies, which are happy to make you pay thousands of dollars for small datasets - no thanks! Shouldn't there be a better solution?

Building a Solar Forecasting System is Not Easy!

Example forecasts for small-scale solar in South Australia from 22 March 2017. Probability bounds are provided in the shaded regions of each forecast.

Example forecasts for small-scale solar in South Australia from 22 March 2017. Probability bounds are provided in the shaded regions of each forecast.

In addition to historical solar radiation data, researchers equally need to be able to access solar forecasting information. If you want to build any of the future grid enabling technologies which seize the opportunity of intermittency, they must be built in a fashion which captures the uncertainty of solar forecasting. 

At ANU/Solcast, we are pretty good at predicting the near-term availability of solar radiation, but we're not perfect either.  Given the stochastic nature of cloud formation & dissipation, their fast-moving, fast-changing characteristics and their complex optical properties, we are never going to get a cloud/solar radiation forecast 100% correct, 100% of the time.  But what we can do, is provide researchers with access to a state-of-the-art solar forecasting technology with world-class accuracy, that includes probabilistic forecast information. This way, they can build tech with these uncertainties built in - a key part of orchestrating the future grid!

Solar Data + Solar Forecasts = Easy to Share

Our Himawari 8 derived solar irradiance datasets at right, compared with the Bureau's old satellite data at left.

Our Himawari 8 derived solar irradiance datasets at right, compared with the Bureau's old satellite data at left.

In my personal quest to enable other researchers, I've realised, that in my position, with my team at the ANU, and our work with our start-up company Solcast, we can fix this problem.  We can openly and freely share solar radiation data, PV system power output datasets and solar forecasts through our joint ARENA project.   As project Chief Investigator, I have decided to inject some ARENA project funds into a data sharing campaign as part of our knowledge sharing efforts, to support the computational requirements of servicing this data to external parties. 

To be clear, that means that YOU, the researcher, get to extract the data for free for R&D purposes

And with the #SolcastAPI it is actually that easy. Within minutes of registering, you can access historical "Estimated Actuals" derived from the Himawari 8 satellite (right now, reaching back 7 days, in the near future - much deeper!) and solar radiation forecasts for GHI, DNI and DHI (powered by my Engerer2 model).  You can also use the API to simulate solar PV system power output, either via the Estimated Actuals or through the forecasts (0-7 days our, 30 minute increments).

To get started, visit the data sharing page I placed on my webpage, to provide more information about this service.  There you'll find some links for getting started. In the near future, I'll add some demos which show how to access this data, and will provide some research ideas for using high-resolution solar data for applied university research.

It's all part of teaming-up for the solar powered future! I look forward to seeing what you come up with!


Find More Stuff:

The Engerer2 Diffuse Fraction Model (Global Radiation Separation Model)


August 2016 Update: You can learn how to compute the Engerer2 model in my Rpackage here!

This blog post explores the success of the Engerer 2 model as laid out in: Engerer, Nicholas A.  Minute resolution estimates of the diffuse fraction of global irradiance for southeastern Australia. Solar Energy. 116, June 2015, pp. 215-237.

[download the paper here]


One of the key outcomes from my PhD thesis was the validation of two different types of radiation models: clear sky and separation, against one minute resolution data. For the clear sky validation, I found suitable performance from several models for use in Australia, but the available separation models, however, did not have acceptable performance

The main issue with the available separation models (models that take a global radiation measurement from a pyranometer and separate it into its direct and diffuse components), is that they are regression based, with the original data being hourly averages of radiation.  At minute-resolution timescales, the relationship with global and diffuse/direct radiation is very different.  For one, there are very rapid fluctuations in the incoming radiation budget across these timescales.  Another big difference is the influence of cloud enhancement which is where radiation arriving at the surface exceeds the clear sky value because of non-linear interactions with some types of cloud decks. 

The Engerer2 model, with the diffuse fraction (Kd), plotted against the clearness index (Kt)

Making big changes, in the name of science

Thus, when I formulated my model, I knew that I had to make some significant advancements upon the existing methods/literature.  The principal improvements made with this model are four-fold:

  1. Inclusion of a physical model (REST2 clear sky model), making the model 'quasi-physical', much like the DISC model written by Eugene Maxwell (Maxwell 1987)
  2. The model is the only one of its class (as of the time of publication) that has been fit to minute resolution data (most other models have been designed for hourly data)
  3. There are two new variables, which have not previously been utilised in a separation model.  These are delta_Ktc (deviation of observed clearness index from clear sky value of clearness index)
  4. and K_de (the portion of the diffuse fraction that is attributable to cloud enhancement events)
The Engerer2 model formulation.  Please  read the paper  for more information.

The Engerer2 model formulation.  Please read the paper for more information.

independent assessment of the model: it works very, very well

The result is an impressive performance of the model against the current suite representing the state-of-the-art.  In a recent study, Gueymard and Ruiz-Arias 2015, radiation data from 54 sites around the globe were used to validate 140 separation models.  In this study, the Engerer2 model was the best!  Here it is, as described in the text:

“It is found that two models stand out over the arid, temperate and tropical climate zones: ENGERER2 and PEREZ2. These two models share two important features: (i) They include a variability predictor; and (iii) They leverage clear-sky irradiance estimates. The reason why ENGERER2 performs consistently better than PEREZ2 or other models is most likely because it was actually derived from 1-min data (compared to hourly data for PEREZ2 or most other models tested here). Based on the ensemble of statistical results obtained here, it is concluded that ENGERER2 has the best generalization skill, and can thus be considered a ‘‘quasi-universal” 1-min separation model, wherever and whenever low-albedo conditions prevail.”
Figure 2 in Gueymard & Ruiz-Arias 2015. Displaying the stations at which radiation data was used for model evaluation.

Figure 2 in Gueymard & Ruiz-Arias 2015. Displaying the stations at which radiation data was used for model evaluation.

And well... was that ever quite the compliment (especially coming from a scientist whom I've looked up to for so long)!  I am very pleased with this result, because now, my Engerer2 model is the ‘'quasi-universal' 1-min separation model" and has been accepted to be of global standard.  That makes my inner nerd quite happy, I'll admit. "Chuffed" as my Aussie friends would say :-).  And now I've have been given a reason to write a long overdue blog post about this research work.  As well as deliver a little surprise...

NOw, the Engerer2 model is in demand

As a result of this excellent outcome, I have several researchers in the community who would like to use my model, and I am quite happy to oblige.  So with this post, I am also announcing that a beta version of my Rpackage "anusolar" is now available, on request.  You can read more about this software at nickengerer.org/rpackage and where you can find out how to use the Engerer 2 separation model!  This package will allow you to do more than that, including PV simulation, KPV calculation and creating output from clear-sky radiation models.  So go check it out!

#MODSIM2015 - Extracting Solar Radiation Measurements from PV System Power Output

 A bit of background info on my 21st International Congress on Modelling and Simulation (MODSIM2015) paper

[download the paper]

#MOSIM2015 is underway! And lucky me, I’m here at our wonderful sunny Gold Coast location awaiting my opportunity to present an innovative modeling approach which estimates solar radiation using PV system power output.

Without further delay, let’s dig right in...

The Premise

A pyranometer!

A pyranometer!

Here’s the premise:  photovoltaic solar panels are not altogether different from pyranometers.  In most cases, pyranometers – the global ‘go-to’ solar radiation sensor – use a silicon wafer to measure the global horizontal irradiance at a given location.  Interestingly, this silicon wafer is based on the same technology as most PV modules.  The result is that the power output from a PV system has a first order relationship with the global solar radiation arriving in the plane-of-array.  As a scientist, this creates a sense of curiousity within me!  I wonder, can we use the power output from a PV system to then work our way back to a standard radiation measurement?

The Hypothesis

Let’s put that pondering within the framework of the scientific method, forming a hypothesis:

“Solar panels are not altogether different from pyranometers, thus one should be able to use their power output as an input to a ‘separation’ model to estimate the diffuse and beam components of solar radiation”

What is a separation model?

Over the past several decades, there have been many (as in hundreds) of models developed for the purpose of separating the diffuse and direct (beam) components from a global horizontal irradiance measurement.  In my recent paper (link), I describe this more thoroughly, so dig into that if you’re interested in learning more (or if you are a bit lost on the above bold terms)

The Engerer 2 model

The Engerer 2 model

What I’ve done with my MODSIM2015 paper, is use my own separation model format – the “Engerer 2” model - and modified it to accept PV power output measurements as the primary input, in place of pyranometer measurements.  The overall goal here, is to estimate the diffuse component of radiation using only the measured PV power output through this model and then test how well it performed.

In this paper, we use a scientific approach to test this.  Two different model formats were tested.  One with a single input, and another with four inputs.  We compare a standard pyranometer based model (Kt), fit to the same data, to the PV power output based model (KPV).  This allows us to directly compare the two approaches in a controlled, scientific fashion. 

Now, in order to do this, we need data.  So, I turned to my usual sources of data, PVOutput.org and the Bureau of Meteorology solar radiation monitoring sites.  Fortunately, I was able to identify 18 PV sites in Adelaide and Melbourne which were of very good quality and located within 10km of a solar radiation monitoring site. 

Next, I processed these data through quality control algorithms (read more in my PhD thesis) and then averaged them to hourly values.  With this QC complete, we’re able to start fitting and testing the models. 

There are a lot of details here, which I’ll glaze over in this blog post, but you can review in our paper.  Such as what QC methods I used, how I chose the PV sites, etc, etc.  I’ll leave it to you to investigate this further!  I’d rather spend my time here talking about what we found, because it is pretty cool.

The Results

First, in fitting and testing the single parameter model, the general approach undertaken was validatedThe idea works.  The relationship used in my diffuse fraction model (Engerer 2) relies on a generalized logistic function based on the relationship between the Diffuse Fraction (Kd) and the Clearness Index (Kt).  However, in the PV power output based model, we use KPV in place of Kt,  KPV is the clear-sky index for photovoltaics, and allows for the removal of all the individual nuances from the PV power output time series (use the link above to learn more)

This is a great start, but the results for a single input model aren’t very good.  This is because the model is too simple for the complex relationship between radiation and cloud cover.  But never fear, that’s where the Engerer 2 model comes in.

For those of you who are not familiar with this field, it's worth mentioning that the Engerer 2 model was recently declared the "quasi-universal" separation model in a global study using 54 sites to test 140 different models in a study by Chris Gueymard, a leader in the solar radiation modelling field.  So we're taking a modern approach to this problem.

Herein, we use the Engerer 2 model format to further test our hypothesis.  Except for the solar PV power output based model, we change another one of the input variables so that it is based on PV power output instead of a pyranometer measurement. This is the deviation from clear-sky variable (read more in the paper).

Kt versus KPV based modelling within the Engerer 2 model framework. 

Kt versus KPV based modelling within the Engerer 2 model framework. 

The results were very encouraging! The figure above demonstrates that by using only the PV power output, we are able to use our generalised logistic function based model to estimate the diffuse fraction of solar radiation with only a 5% increase in rRMSE and 0.7% increase in rMBE over a pyranometer based model.  Moreover, the observed relative errors are within the ‘good’ modeling requirements established by Gueymard and Meyers 2008.

Great, now what?

Moving forward with this result, there is now more work to do! For example, with a pyranometer measurement, once we have the diffuse component, we get the direct component through the closure equation. With PV system power output, this isn't possible.   So we'll need to test our ability to do extract the beam component further.  Possibly, this might require the joint development of another model to extract it

Despite the further work required, the results herein remain exciting. The approach used in our paper show that extracting solar radiation measurements from PV system power output can be done. This is a world first for such a result, and it is exciting to know that further work in this space is realistic. 

I am very hopeful that this result will encourage others in the field to further explore this conceptual work.  If we can extract solar radiation measurements from PV power output, we suddenly can create a very rich dataset of radiation measurements globally, greatly augmenting our ability to anlayse the spatio-temporal evolution of incoming solar radiation.  Such a dataset can assist in the validation of satellite measurements or global climate/meteorological modeling tools. 

So, with this very awesome scientific finding, I’ll leave you with the above thoughts, and hope that you’ll go on to read the paper, cite the results and further develop the prospect of having millions of additional solar radiation sensors globally.

[download the paper]

[download the presentation]

View the presentation below:


What's Happening at #MODSIM2015

Find Stuff!


Solar 2014: Which Clear-Sky Radiation Model is Best for Use in Australia?


Update 2015: This research is now available as a paper in Solar Energy journal!

[download paper]

Citation: Engerer, Nicholas A and Franklin P. Mills. Validating Nine Clear Sky Radiation Models in Australia. Solar Energy. 120, October 2015, pp. 9-24.


Have you ever wondered which clear-sky solar radiation model you should use in your research project or solar energy simulation?  When I was designing my KPV method for estimating PV system power output I needed to figure out which clear-sky model would be the best one to use.  But there was a problem - I couldn't find a single validation study for clear-sky radiation modelling for Australia!

So in the paper, I had to do a quick model validation using one year of radiation data from Wagga Wagga, from which I decided on the Esra model.  But that simple validation left me wondering which model REALLY was the best?  

Thus I embarked on a scientific journey to discover which model was the best for use in Australia using the solar radiation data from 14 sites in Australia:

 

First, I set a few ground rules.  I wasn't going to use any radiation model that was overly complicated, nor was I going to use atmospheric variables that were difficult to obtain.

This meant using climatological values for input values such as the Linke Turbidity coefficient or ozone content - rather than using direct measurements from a photometer (because who honestly has spectral data?).  I think this is important, because a validation study should focus on models that are widely applicable so that it is widely useful.

In the end, I chose nine models from the options from both beam (direct) and global radiation: 

In the many Australian presentations and publications I've read and attended over the past few years, the most common clear-sky radiation model used is the Ineichen-Perez model.  

However, my research shows that the Ineichen-Perez model is not even in the top-three best choices.  So we really shouldn't be using it in our research as it is introducing unnecessary errors into our collective research knowledge.

What models are the best to use?  For the beam models, the top three choices are the Iqbal-C, Esra and REST2 models.  And for the global models, they are the Solis, Esra and REST2 models.

If we were to chose the best overall model, that would be the Esra model.  Which edges out the REST2 model, due to is large errors at high zenith angles.

You can read more about this in my Solar 2014 Poster Presentation [direct download] and the hopefully an upcoming article in Solar Energy journal (fingers crossed).

Until then, the quick answer is...

The best clear-sky radiation model for use in Australia is the Esra model!

 
/*